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Accurate Regge pole positions and residues determined by 
phase-amplitude formulae 

Nils Andersson? 
Department of Theoretical Physics, Thunbergsvigen 3, 5-752 38 Uppsala, Sweden 

Received 14 August 1992, in final form 12 March 1993 

Abstract. Formulae determining Regge pole positions and residues are derived within the 
phase-amplitude method. Numerical calculations are performed for an optical 
Lennard-Jones (12,6) potential using parameters approximating elastic scattering of K, 
and Li. by HBr. Comparison with previous investigations shows that the phase-amplitude 
resulti are very accurate. Hence. the phaseamplitude method provides an important 
alternative to other methods used to investigate scattering problems in the complex 
angular nomenmm representation. 

1. Introduction 

In elastic scattering theory the collision of two spinless particles is described by the 
time-independent radial Schrodinger equation 

where E is the collision energy, I( is the reduced mass of the colliding particles and r is 
the distance separating them. The potential V(r) is a, possibly complex valued, 
function describing the interaction. In this investigation we only require that V(r) 
vanishes asymptotically and that it includes'no Coulombic tail. In order to be 
physically realistic, however, the potential energy function must be attractive at large 
distances and become strongly repulsive as I decreases. 

A general solution to (1) is regular at the'origin 

Y(0) = 0 (2) 
and can be normalized to have the asymptotic f o p  

Y(r)-exp(-i(kr-ZdZ))-S,exp( +i(kr-ldZ)) asr--t+m. (3) 

The quantity k= (ZpE)'% is the wavenumber and Sl defines the elements of the 
scattering matrix. 

During the last few decades techniques for solving (1) in atomic and molecular 
physics have been of continuing interest. The quantity of basic physical interest is the 
differential cross-section which can be expressed in terms of the scattering amplitude. 

t Present address: Department of Physics and Astronomy, University of Wales, College of Cardiff, Cardiff 
CF23YB, UK. 
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Consequently, several methods have been developed to investigate the properties of 
the scattering amplitude. In the standard representation the angular momentum, I ,  is 
a non-negative integer and the scattering amplitude is given by a partial-wavc series. 
However, for collisions involving heavy particles such as atoms or molecules, this 
series is often slowly convergent and hardly appropriate for practical calculations. In 
these situations the complex angular momentum representation (see Connor 1980, 
1990 or Thylwe 1987 for reviews and further references) has proved to be a powerful 
alternative. In complex angular momentum theory the energy, E,  is treated as a real 
parameter while the angular momentum, I ,  is allowed to assume continuous complex 
values. After a Watson-Sommerfeld transformation the scattering amplitude can be 
expressed in terms of a background integral and a sum involving the energy- 
dependent poles of the S-matrix. The great advantage of the complex angular 
momentum representation is that, in many practical cases, only a few singularities 
contribute to the pole sum. Poles in the complex 1-plane are referred to as Regge poles 
and it can be shown that there exists an infinite number of such poles for potentials 
with a repulsive singularity at the origin (i.e. when r2V(r) diverges as r+O). At 
medium and high energies the consecutive poles are separated by a small real part and 
a relatively large imaginary part. 

It follows from (3) that a pole of the S-matrix corresponds to a solution to (1) that 
fulfils a boundary condition of purely outgoing waves at infinity. This boundary 
condition cannot be fulfilled unless the angular momentum, or in the standard 
representation the energy, is complex valued. In effect, the analogue to an investi- 
gation of Regge poles, l,,, is the determination of complex energy resonance states. 

A determination of the scattering amplitude in the complex angular momentum 
representation also demands that the residues, r., associated with the Regge poles are 
known. In some neighbourhood of the Regge pole 1, the associated residue is defined 
by 

r. =lim ( I -  la)Sl. (4) 
1 4 "  

It is clear that, although only a few poles give a significant contribution to the pole 
sum, the position and residue of each pole must be obtained with a high accuracy if 
summation is to be a sensible procedure for calculating the scattering amplitude. Most 
previous investigations have failed to satisfy this demand. This failure is intimately 
connected with the difficulties of solving the Schrodinger equation for a complex value 
of the angular momentum. 

It has often been realized that direct numerical integration of the Schrodinger 
equation for a complex valued energy (or angular momentum) involves serious 
computational difficulties if carried out along the real coordinate axis. Thii deficiency 
can, at least to some extent, be avoided through the introduction of complex 
coordinates. Regge states can be determined by numerical integration of the 
Schrodinger equation along suitable contours in the complex coordinate plane (Bain 
et a1 1975, Sukumar and Barddey 1975). However, since the integration contours in 
the standard complex rotation scheme are not unambiguously defined this method is 
often numerically unstable. 

Another deficiency of the direct numerical integration approach is that a large 
value of the reduced mass, as in ion-atom collisions, unavoidably leads to rapidly 
oscillating wavefunctions. In the oscillating region numerical integration requires a 
large number of integration steps and an accumulation of numerical errors can hardly 
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be avoided. As discussed by Bosanac (1978), this deficiency c a ~  be avoided if the 
differential equation (1) is replaced by a nonlinear equation whose basic solutions are 
non-oscillatory. 

The use of semiclassical methods have proved to be a reasonably accurate way of 
investigating the Regge propeaies of intermolecular potentials (Dombey and Jones 
1968, Delos and Carlson 1975, Connor 1972, 1982, Connor er a1 1976, 1979, 1980). 
Calculations by Connor et a1 for a Lennard-Jones (12,6) potential show that Regge 
pole positions and residues obtained from a uniform WKB treatment are in good 
agreement with the corresponding numerical integration results, with the accuracy 
improving as the quantum number PE increases. Complex angular momentum tech- 
niques have also been successfully developed within the phase-integral method 
(Thylwe 1983a, b, 1985) and a recent numerical investigation by Amaha and Thylwe 
(1991) is extremely accurate. 

It is well known, however, that the asymptotic nature of the approximate methods 
restricts their usefulness in problems where many so-called transition points have to 
be considered. Another deficiency of the approximate calculations is that they lack 
efficient error control. Reliable numerical integration schemes, where the accuracy 
can easily be estimated and increased, are therefore necessary complements to any 
such approximate analysis. 

Using a modified Priifer phase function approach Pajunen and coworkers (1985, 
1986, 1988, 1989) have developed a method for evaluating Regge pole positions and 
residues for singular potentials. The results of Pajnnen are numerically more accurate 
than those obtained by the complex coordinate approach or the WKB method. The 
Regge pole positions can be accurately and straightforwardly obtained within the 
Priifer method. Meanwhile, the formula used by Pajunen to determine the corre- 
sponding residues is somewhat confusing. It is equivalent to a formula obtained from a 
non- uniform^ WKB treatment. It seems, however, as if a mixture of semiclassical and 
numerically obtained quantities are used to evaluate this formula. In the opinion of 
the present author, Pajnnen's approach for obtaining residues cannot be considered at 
all satisfactory. 

In a previous paper the phase-amplitude method of Newman and Thorson 
(1972a, b) -as generalized to the complex coordinate plane-was used to determine 
accurate quasinormal-mode frequencies for Schwarzschild black holes (Anderson 
1992). In this paper phase-amplitude formulae determining the positions and residues 
of Regge poles will be derived. Numerical calculations will then be performed for an 
intermolecular potential 

v(r) = 4e [ (:) "- (:) '1 - i w  (')' 
i.e. a Lennard-Jones (12,6) potential perturbed by an imaginary term proportional to 
r-'. The imaginary part of this optical potential can be considered as a loss of flux from 
the elastic channel. Hence, with WZO, this potential corresponds to reactive scatter- 
ing (Thylwe and Froman 1983). In the present investigation we have introduced the 
dimensionless quantities 

2p W d  WA ' C=-=- 
h' E '  

E K=- A = k a  
E 

The parameters will be chosen to approximate scattering of K, and Li, by HBr. These 
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parameters have been preferred since they are used in a large number of previous 
investigations, see for example Connor et nl(1976,1979, 1980), Pajunen (1988) and 
Amaha and Thylwe (1991). 

2. The phase-amplitude method 

By the transformation z=r /u  the differential equation (1) can be written 

where R(z )  is an analytic function of the, possibly complex valued, coordinate z. For 
the perturbed Lennard-Jones potential, (5) ,  the function R(z)  is explicitly given by 

R ( z ) = A 2 - y ( - p - p ) + ~ - ~  4A' 1 1 iC 1(1+1) 
(7) 

As mentioned above, the problem of calculating Regge poles, reduces to determining 
the regular solution to (6) that fulfils the condition of purely outgoing waves at 
infinity, z = + m . 

In the phase-amplitude method the general solution to (6) is written as a linear 
combination of the two functions 

qP=q""(z)exp +i q(z)dz I I  1 
where the function q(z) can be numerically continued in the complex coordinate plane 
by integration of the nonlinear differential equation 

----(-) 1 d2q 3 dq 2 + q z - R ( z ) = ~ .  
2qdz2 4q2 dz (9) 

In practice, a convenient scheme for tracing q(z) involves writing (9) as a system of 
three coupled differential equations of the first order, determining also the integral of 
q(z) along the chosen integration contour (Andersson 1992). In the present investi- 
gation this system of differential equations was solved by means of the NAG-routine 
D02CBF based on a variable step, variable order A d a m  method. 

The functions (8) provide two linearly independent solutions to (6) for all possible 
choices of initial conditions for q(z). However, it is computationally desirable that the 
function q(z) is non-oscillatory. A smooth behaviour of q(z) is, to some extent, 
guaranteed from the use of accurate asymptotic initial conditions (Andersson 1992). 
In the asymptotic region we therefore replace q(z) with an explicit expression 
obtained from the arbitrary-order phase-integral approximation, see Froman and 
Froman (1991) for references. The phase-integral expression for q(z) is accurate when 
z is far away from all transition points, i.e. zeros and poles of R(z ) .  In practice, there 
are other possible ways to obtain appropriate initial values for the numerical 
integration of (9), e.g. power series expansions. In the present analysis the phase- 
integral approximation has been preferred since it provides functions with a very high 
accuracy when the order of approximation is increased. We consider the phase- 
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Figorel. The pattern of semiclassical anti-Stokes (fulldrawn) and Stokes (dashed) lines 
for the Lennard-JonesilZ, 6) potential (5) and parameters correspondingto n= 0 in table 
1. The transition points considered in the analysis are t, and I ~ .  Integration contours used 
are A,. A, and A+ 

integral function replacing q(z) asymptotically to be chosen such that ly' fulfils the 
boundary condition determining a Regge state at infinity. 

In order to avoid oscillations in q(r) it is also convenient to consider the pattern of 
semiclassical anti-Stokes lines, see figure 1 and the discussion in appendix 1. These are 
contours along which the quantity R"'(z) dz is pnrely real. It is convenient to replace 
the physical boundary conditions (on the real coordinate axis) with boundary con- 
ditions on such anti-Stokes lines (Anderson 1992). On the anti-Stokes line &, 
emanating from tz towards infinity, the solution ?)+ corresponds to an outgoing wave. 
For IzI very large it can be shown, using semiclassical theory, that this solution 
corresponds to the desired behaviour on the real axis. It can also be proved that a 
solution corresponding to a wave travelling away from the transition point tl along the 
contour A1 corresponds to an exponentially decaying solution on the Stokes line 
emerging from tl towards the origin. In effect, such a solution agrees with the 
condition of regularity at the oripin. 

Consequently, we trace the solution to (6) along an integration path A=A, +A2 + 
A3 consisting of anti-Stokes limes and joining the origin with z=  m (figure 1). Then the 
differential equation (9) has to be integrated through the regjon close to two transition 
points, tl and 4. No other transition points are of relevance in the analysis. It is 
important to note that the integration contours are, in a sense, well defined. Thus we 
avoid the ambiguities of any standard complex rotation scheme. In this investigation 
the integration contours are constructed such that AI approximates the anti-Stokes 
line that emerges from the innermost of the two transition points considered, tl, 
towards the origin. Meanwhile, A3 is a straight line approximating the anti-Stokes line 
that emerges from the outermost transition point, t2, towards infinity. The contour A2 
is a straight line joining tl with tz. 

One may argue that figure 1 suggests other-perhaps as convenient-choices of 
integration contours. It may be worthwhile to clarify the reason why these possibilities 
have been discarded. The argument requires some knowledge of how an approximate 
solution, i.e. a linear combination of the two solutions (8) with q(z) approximated by 
R1/2(z), will change if continued in the complex coordinate plane. It is known that the 
linear combination must change as a zero of R(z )  is circumvented. Specifically, the 
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coefficient of the solution that is exponentially small will change rapidly as a 
semiclassical Stokes line (along whichR1’Z(z) dz is purely imaginary) is crossed. This is 
known as Stokes phenomenon. Let us first see what this implies should we want to 
continue a given solution to (6) along the real coordinate axis. In doing so, it is clear 
from figure 1 that, we must cross two Stokes lines; one emanating from the transition 
point tl and the other from tz. Hence, the effect of these two points must be 
considered. It is also worth pointing out that if one continues the solution along the 
lower one of the two anti-Stokes lines that goes from tl to the origin the same 
argument implies that a third transition point (approximately at 0.9-0.35 i) should be 
accounted for. Hence, that choice would be more complicated. Finally, it is not 
possible to discard the two transition points tl and fz and instead match the numerical 
solutions, as integrated from infinity and the origin, at the third transition point in 
figure 1. Because of the first argument above, the effect of tl and tz should still be 
considered. 

3. Regge pole positions 

The desired solution to (6) on the anti-Stokes line Al of figure 1 can be written 

Y,=a:v: (10) 
where a: is a constant and we have introduced subscripts to indicate on which 
integration contour the quantities are numerically determined. For all points on A,, 
the function $0: (i.e. ql(z)) is obtained by numerical integration of (9). However, a 
simple semiclassical argument (outlined in appendiv 1) suggests that the numerically 
determined function q(z) will not remain nicely behaving if it is continued through the 
region close to the transition point tl. Hence, it is preferable to match the above 
solution to another one at tl using the requirement that a solution to (6) (and its 
derivative) be continuous. It then follows that, on the contour A2 the solution Yl can 
be expressed in terms of the function qz(z) (which is determined by integration from a 
point on A2), and we have 

Note that we have used the transition point t ,  as matching point of the two solutions. 
The connection phase is given by the implicit relation 

In the evaluation of this formula we assume that the necessary branch cuts extend 
along the imaginary axis from tan el = k i towards the positive and negative infinity, 
respectively. In practice, this means that the real part of is close to z/3 while the 
imaginary part is small. 

It is important to note that initial conditions for the determination of the function 
ql(z) are chosen such that v: has the desired behaviour on Al. Meanwhile, there is no 
boundary condition determining initial conditions for the function qz(z). However, 
although (11) arises from the matching of two different solutions at the transition 
point t l ,  it expresses the function ‘PI in terms of the, more or less, arbitrary function 
qz(z). Therefore, initial conditions determining q2(z) can be chosen in any convenient 
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way. It is, of course, still desirable that the function is non-oscillatory. We have used 
the first order phase-integral approximation (which is equivalent to the WKB approxi- 
mation) to initiate the determination of qz(z). The integration of (9) was then 
continued from the midpoint of the contour A2 towards the two transition points. 

On the other hand, the general solution to (6) on the contour A3 is 

Y3=a:yr: +a;q; (13) 
where a: and a; are constants. It is straightforward to verify that, the corresponding 
solution in a point on Az can be written 

The connection phase 0, is given by 

where all quantities are to be evaluated at the transition point t2. 
The obvious condition that the two functions (11) and (14), determining the 

solution to (6) on the contour A2, must be identical (except for a constant factor) 
implies that 

[q2(z) dz = an+ e, - ez n=O, 1 , 2 , .  . .. (16) 

when the boundary condition of outgoing waves at infinity is imposed this can be 
written I:, qz(z) dz = an + 0, - ez, n=O, 1 , 2 , .  . . (17) 

where n is an integer labelling the Regge poles. The quantity Oz.” (corresponding to 
the nth Regge state) is given by (15) with a; = 0. 

It is important to note that each complex eigenvalue I ,  of (17) is unambiguously 
associated with a quantum number n. This is not the case in many standard numerical 
integration schemes. In effect, the condition (17) does not demand an accurate initial 
guess for the eigenvalue in order to be computationally efficient. 

4. Residues 

To obtain the residue, r., corresponding to a Regge pole position I., the definition (15) 
can be rewritten 

a: q2(tan 0, - tan OZ, ”) + 2 iq, 
a; qr(t& e2+ - tan e,) -= 

1 
tau Oz.. - tan O2 as I+ 1. -2i e) 

‘2 
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since Bz=t9z.n for a Regge state. By expanding this expression in a Taylor series 
around the nth Regge pole position, I,, we have 

where Do([) is defined by 

~,(~=e,. . -e,  (20) 
However, since 0, is defined by (15) for any value of 1 we can use (16) to replace 0, in 
the above formula. We then have 

which vanishes for a Regge state according to our condition (17). The partial 
derivative in (19) is formally given by 

It is important to note that the last two terms in this expression are non-zero. This is 
since the connection phases Oi depend on the initial conditions used for the integration 
of (9) and the actual position of each transition point. In effect, 0, will depend on the 
value of 1. 

It can be identified from (3) and (13) that the desired S-matrix element is given by 

SI=- y exp(23,) (3 
The asymptotic phase, a,, is defined by 

Consequently we obtain, after comparison with (4), a phase-amplitude formula for 
the residue 

5. Numerical results and conclusions 

The phase-amplitude formulae, (17) and (Z), determining the Regge pole positions 
and the associated residues have been applied to potentials of the Lennard-Jones 
(12,6) type. Calculations have been made for the potential (5) and parameters 
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Tablel. The fin< 15 Regge pole positions and residues for the potential (5) and 
parameters A=141.425, K=5, C=O,s=Oapproximatingnon-reactivescatteringof K by 
HBr. The power of ten by which the entry for the residue should be multiplied is givenin a 
parenthesS.. 

~ ~~ 

0 180.01194 802439 21.21891 512843 5.77470 7026 4.53347 6997 (5) 
1 179.23898781084 24.03474 884056 -1.23424 0659 -6.2?3864836(8) 
2 175.52289 375120 26.89009 534776 -1.43769 2536 2.06831 7707 171 
3 177.86657 699632 29.78018 810161 6.16778 2768 -0.35239 6135 (7j 
4 177.27239 0601 19 32.70007 684278 -6.09585 0 9 4  -8.712445 4078 1'7) 
s 176.74212599615 3 5 . ~ 6 9 ~ ~ 2 4 8 7  -0.69323 0414 1.19833 6 3 9  isj 
6 176.27701 612317 38.60891 259111 1.40395 7405 ~ 0.30107 3710 (8) 
7 175.87774600573 41.58762560819 0.02984 8349 -1.233747247(8) 
8 175.54447 127345 44.57579 387606 -9.06964 9267 0.31460 3272 (7) 
9 175.27684 460365 47.56851 246641 -0.20692 0990 5.86207 6012 (7) 

10 175.07404 953509 50.56106317230 3.31864 2495 0.788754079 (7) 
11 174.93484067442 53.54896204117 0.963848910 -1,545724035 (7) 
12 174.85758 898894 56.52799 946735 -4.87737 1648 -7.67831 9456 (6) 
13 174.84033067693 59.4942721916s -4.31626 1216 -O.W0218985(6) 
14 174.88081 803256 62.44420 694809 -1.211300 4897 1.53338 1216 (6) 

A=141.425, K=5, C=O,s=O (Connor et a1 1976, Pajunen 1988), andA=141.425, 
K=5, C=2x104, s=12 (Connor et a1 1979, Pajunen 1988) which correspond to 
elastic scattering of K by HBr. The numerical results are presented in tables 1 and 2, 
respectively. Calculations have also been performed for parameter values A =53.401, 
K=2.462, C=l  x lo4, s=20 (Connor et ai 1979, Pajunen 1988) corresponding to 
elastic scattering of Li by HBr. The Regge pole positions and residues for these 
parameters are in table 3. All the results in the tables are expected to be accurate, 
except for a slight uncertainty (due to round-off errors) in the last digit. 

TableZ. The first 15 Regge pole positions and residues for the potential (5) and 
parametersA=141.425, K=5.0, C=2x l@,s=12approximatingreactivescatteringof K 
by HBr. The power of ten by which the entry for the residue should be multiplied is given 
in a uarenthesis. 

n Rel" Im 1" Re r, Im r. 

0 192.35701 697690 ~ 19.37323 330320 2.08395 1558 -1.49212 8626 (3) 
1 191.93607835206 22.12443748969 -1.78193 1999 -1~.135735056(4) 
2 191.56072720963 24.89339 580341 -2.272520918 . 8.114468711 (4) 
3 191.23218694799 27.67707027566 2.17497 6156 0.151563186 (5) 
4 190.95136366049 30.47234119133 -0,167573003 -4.140072331 (5) 
5 190.71884466553 33.27604719548 -6.20061 3172 0.342544551 (5) 
6 190.53490240589 36.08502423372 0.203509419 7.69436 5625 (5)  
7 190.39950 338703 38.89614260236 7.99851 2591 1.66105 5919 (5) 
8 190.31232 171283 41.70634 143972 3.51857 1971 -6.76911 6268 (5) 
9 190.27275 667267 44.51266007291 -4.23406 8115 -4.811530446 (5) 

10 190.27995374713 47.31226 574202 -4.77076 8399 1.26093 6118 (5) 
11 190.33282 833766 50.10247 735007 -1.03185 0301 3.38354 8388 (5 )  
I? 190.43009119304 52.88U785W10 1.414168689 1.931146426(5j 
13 190.57027690451 55.bl486540219 1.54003 1271 0.147839427 (5) 
14 190.75176 846855 58.352.59 271994 7.59019 4586 -5196279 2417 (4j 
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Table3. The first 15 Regge pole positions and residues for the potential (5) and 
parameten A=53.401, Kc2.462, C=l X le, s=20 approximating reactive scattering of 
K of HBr. The power of ten by which the entry for the residue should be multiplied is 
given in a parenthesis. 

n Rel. Im c Re r. Im r. 

0 76.93675231616 4.67764 625857 -4.287367297 -1.011705778 (1) 
1 76.69123 265614 7.52121 295041 0.652257503 2.010567134 (zj 
2 76.56189829690 10.36977 300855 3.56214 6457 -2.752968656 (2) 
3 76,53938416616 13.21475 768514 -4.06064 6289 -4.04478 0153 ;'$ 
4 76.61961 547167 16.04755 421752 -4.03848 GZ46 3.30486 3805 (2) 
5 76.79887 476652 18.85793 G7.8405 1.313353152 3.554924352 (2) 
6 77.07176956914 21.63532394264 2.331238271 0.46802 1776 (2) 
7 77.43099 573032 24.37014 940204 1.11573 a 7 6  -0.79312 5378 (2) 
8 77.86781 466543 .. 27.05457084008 2.362622158 -7.18850 31% (1) 
9 78.37270846800 29.68280726378 -0.664968333 -4.097893701 (1) 

10 78.93598 862116 32.25111745195 -1.122885120 -2.07.355 7723 (1) 
11 79.54827 512074 34.75759 521965 -9.003000026 -9,806543118 (0) 
12 80.20082902290 ~ 37.20187189039 ' -6.19982 1250 ' -5.019647693 (0) 
13 80.88575206699 " 39.58479 191223 -4.120409880 -2.838103758 (0) 
14 81.59607923553 I 41.90810247845 -2.75158 2950 -1.802446287 (0) 

In practice, the Regge pole positions were found by iterating (17) in the complex 
I-plane using Muller's method. The residues were then determined from (25). The 
partial derivative of D.(Z) with respect to I, required for the evaluation of (25), may be 
calculated by means of numerical differentiation of (17). Alternatively, the system of 
first-order daerential equations corresponding to (9) can be extended to determine 
also the partial derivative of q(z) with respect to I. This is, although computationally 
faster and conceptualty more accurate, not a simple method because of the complexity 
of the higher-order phase-integral expressions used to initiate the numerical integ- 
ration. If, however, only reasonably accurate results are required the latter approach 
should be preferred. 

Semiclassical and complex coordinate methods have been used by Connor et a1 
(1976, 1979) to determine the Regge pole positions and residues for the potential (5) 
and the above parameters. Recently Pajunen (1988) used the Priifer approach to 
investigate the problem. Our results were primarily compared to those of Pajunen 
(1988) for two reasons: first, they are claimed to be of higher accuracy than those of 
Connor et al; secondly, the Priifer method of Pajunen is based on numerical 
integration of a slowly varying phase, and is therefore similar to the phase-amplitude 
method of the present paper. A comparison with the results obtained by Pajunen 
(1988) shows that the Regge pole positions obtained by Pajunen are confirmed and 
increased in accuracy by at least six digits by the present treatment. For each residue, 
Pajunen's result generally agrees with that obtained from (25) to three decimal places. 
In a few cases the discrepancy is in the fourth decimal place (which is the accuracy 
quoted by Pajunen), but there are also cases where it is larger. However, it is clear 
from the pole positions that the numerical accuracy of the present treatment is much 
higher than that used by Pajunen. Moreover, while Pajunen's method for obtaining 
the residues is rather ad hoc (it is at least not properly described) our residues are 
determined from (25) which followed from a rigorous derivation. Hence, we believe 
that the present results should be trusted. 
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It is obvious from tables 1-3 that the phase-amplitude method yields very accurate 
numerical results for the Regge pole problem. In fact, the present treatment is much 
more accurate than any previously published investigation. The only exception is 
recent phase-integral calculations in high orders of approximation by Amaha and 
Thylwe (1991). The phase-amplitude results presented in our tables are in complete 
agreement with those of the phase-integral calculations. Hence, the high accuracy of 
both methods is confirmed. However, it is conceivable that the phase-amplitude 
approach will be reliable also in situations where the phase-integral method can not be 
used. When several transition points lie close to each other the accuracy of the phase- 
integral method will be poor. The phase-amplitude method should not suffer from this 
deficiency. 

We conclude that the Regge pole problem can straightforwardly be solved within 
the phase-amplitude method. Formulae determining the Regge pole positions and the 
corresponding residues have been derived. The results obtained from these formulae 
are of very high numerical accuracy. The phase-amplitude method must therefore be 
considered as an important alternative to any other numerical integration scheme or 
approximate analysis. 

Acknowledgments 

The author thanks Dr K E Thylwe. He was always encouraging and prepared to 
answer (usually very naive) questions about scattering theory. If it was not for his 
knowledge of complex angular momentum theory this paper could never have been 
written. 

Travel grants from the Royal Society of London and the Royal Swedish Academy 
of Sciences are also gratefully acknowledged. 

Appendix 1. On the murenee of oscillations in q(z) 

In this appendix we argue that oscillations in q(z) are unavoidable if the integration of 
(9) is continued through a zero of R(z) .  We consider the situation depicted in figure 1, 
and assume that two exact solutions to the Schrodinger equation (6) can be repre- 
sented by the two functions (8) on the anti-Stokes line A,. The function q(z) can then 
be expressed in terms of these two solutions, i.e. 

Well away from the transition point, however, we have 

1/1- =R-'"(z) exp -i R'/2(z) dz [I: 1 
with the lower limit of integration chosen to be the transition point h. (In the analysis 
below we consider the case where R"*(z) dz is positive and increasing as we move 
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away from the transition point tz along Ay) It follows from (26) that the numerically 
determined function q(z) is not essentially more oscillating than R”’(z). At least not 
as long as the approximate solutions (27) and (28) remain valid. 

If q(z) is numerically continued through the region surrounding the transition 
point t2 onto the anti-Stokes line A2 of figure 1 the two solutions q+ and q- will change 
according to the Stokes phenomenon. From, for example, chapter 7 in Froman and 
Froman (1965) it follows that the two approximate solutions are properly represented 
by 

and 

q- = R -1/4(2) exp [ - i 1: ~ ( z )  k ]  (30) 

for z well away from the transition point t2 on A2. These expressions, together with 
(26), imply that the exact function q(z) (as numerically continued from a point on the 
anti-Stokes line A,) has the approximate behaviour 

q(z)=R”’(z) 1 -iexp[-Zi R“’(z) dz] . ( L2 )-I 

Hence, oscillations in the function q(z) must appear after continuation onto the anti- 
Stokes line A2. 
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